<<
>>

7.1. Близкодействие и дальнодействие

В общепринятой трактовке теории электромагнитного поля (см. [Ландау и Лифшиц, 1967]) действие для частицы с зарядом е и массой т описывается (без учета внешнего поля и в отсутствие других зарядов) выражением

S = - т fds - (е/с) jAkdx

где с - скорость света, Ак - компоненты вектор-потенциала поля, а интегралы берутся по 4-мерной мировой линии от точки, отвечающей началу движения, до конечной точки. Реальной мировой линии отвечает экстремум этого интеграла.

Традиционная концепция описания электромагнитного излучения одиночного заряда лишь запаздывающими потенциалами создает, как может показаться, определенную коллизию с обратимостью исходных уравнений электродинамики, которая приводит к формальной допустимости использования симметричного во времени решения - линейной комбинации выражений f(t - х/с) nf(t + х/с). При этом нельзя не отметить, что и обратимые уравнения механики чаще всего используются лишь для описания будущего поведения объектов. В то же время именно обратимость уравнений механики является, как убедительно показано в [Хайтун, 1996], непреодолимым препятствием для априорного обоснования необратимости стохастического поведения физических ансамблей.

Между тем, идея симметричного во времени процесса электромагнитного взаимодействия в начале 20-го века начала завоевывать умы физиков. Так, авторы работы [У ил ер и Фейнман, 1945] приводят яркое и глубокое высказывание Тетроде (1922 год), который считал излучение следствием непосредственного взаимодействия между излучателем и поглотителем (перевод мой - М.Х.Ш.):

...источник света не излучал бы, если бы где-либо не нашлось тела, способного поглотить это излучение... например, если я вчера наблюдал с помощью телескопа звезду, удаленную, скажем, на 100 световых лет, то не только я знаю, что испущенный ею 100 лет назад свет достиг моего глаза, но также и звезда или ее отдельные атомы уже 100 лет назад знали, что я, который даже еще не существовал тогда, вчера вечером увижу этот свет...

В результате Фоккером и другими физиками была сделана попытка представить действие в более симметричной по отношению ко времени форме (см. [Владимиров и Турыгин, 1985]), где интегралы в выражении для действия (в пространстве Минковского) берутся уже не от начальной точки движения до конечной, а от некоторой 4-мерной точки в прошлом до симметричной ей точки в будущем, причем вектор-потенциал А представляет собой просто сумму таких симметризованных во времени парных взаимодействий выбранной (излучающей) частицы с каждой из остальных частиц Вселенной. В результате действие поля заменяется совокупностью прямых и нелокальных в пространстве-времени межчастичных взаимодействий.

Такой формализм эквивалентен уравнениям Максвелла, однако "опережающее" взаимодействие, которое в нем присутствует наравне с "запаздывающим", входит в противоречие с физической интуицией и отвечающим ей принципом причинности. Более того, как будет видно из дальнейшего изложения, в целом проблема необратимости таким образом вовсе не устраняется, а лишь проявляет себя в другом месте. С другой стороны, имеются глубокие физические основания использовать именно симметричный во времени формализм для описания микроскопических взаимодействий.

96

7. Время, пространство и излучение

Дальнейшее развитие эти идеи получили в середине 20-го века, когда были опубликованы знаменитые работы [У ил ер и Фейнман, 1945, 1949], придавшие идее нелокального дальнодействия зарядов вполне конкурентоспособный статус по сравнению с идеей близкодействия.

Напомню, что согласно последней поле распространяется локально - от одной точки к другой, соседней с ней. Акт и источник излучения в теории близкодействия никак не связываются с актом поглощения и его будущим приемником (поглотителем). Напротив, в теории дальнодействия источник и приемник излучения связываются воедино этим процессом. При этом в основе всех моделей симметризованного во времени процесса излучения лежит представление о существовании во Вселенной распределенной среды, состоящей из большого числа вторичных зарядов, которые и определяют важнейшие особенности этого феномена.

Надо сказать, что роль такого рода среды велика и в классической электродинамике. В частности, эта роль заключается в эффекте замедления скорости распространения по сравнению со скоростью света в вакууме. Данный эффект связан с наличием в той или иной среде связанных зарядов, которые создают вторичные поля, т.е. переизлучают электромагнитные колебания с определенной фазовой задержкой. Действительно, в отсутствие промежуточных зарядов исходный осциллирующий заряд создавал бы для пробного заряда поле, пропорциональное множителю cos(cot - г/с), где г - расстояние между исходным и пробным зарядами. Однако исходный заряд действует также и на промежуточные заряды, которые вследствие этого (с фазовой задержкой) создают дополнительное воздействие на пробный заряд. В результате действия большого числа таких связанных зарядов возникает (см. [Фейнман и др., 1963]) так называемый показатель преломления среды. При прохождении света через среду показатель преломления может быть комплексным. Появление мнимой части означает, что кроме сдвига фазы происходит еще и поглощение энергии колебаний излучения.

Фейнман рассматривает механизм обратного воздействия вторичных зарядов на первичный, вводя два основных предположения. Первое из них состоит как раз в симметричном использовании опережающего потенциала реакции наряду с запаздывающим. Оно, однако, позволяет вывести значение для силы радиационного трения, пропорционального самому исходному ускорению (а не его производной по времени, как должно быть в окончательном результате) излучающего первичного заряда и объемной концентрации вторичных зарядов, окружающих источник излучения.

Ситуацию исправляет второе предположение, которое заключается в обязательном наличии достаточно большого количества вышеупомянутых вторичных зарядов, распределенных во Вселенной (и связанного с ними показателя преломления). Благодаря этому при интегрировании по всему множеству вторичных зарядов учитывается дополнительный фазовый множитель, также зависящий от объемной концентрации частиц. В результате после интегрирования зависимость от объемной концентрации исчезает (интеграл берется от нуля до бесконечности, в случае конечного радиуса "облака зарядов" зависимость оставалась бы), и для каждой отдельной частотной компоненты силы появляется множитель, равный ее частоте, что соответстует переходу от самой функции к ее производной по времени.

<< | >>
Источник: М. X. Шульман. ПАРАДОКСЫ, ЛОГИКА И ФИЗИЧЕСКАЯ ПРИРОДА ВРЕМЕНИ Москва 2006-2011. 2011

Скачать готовые ответы к экзамену, шпаргалки и другие учебные материалы в формате Word Вы можете в основной библиотеке Sci.House

Воспользуйтесь формой поиска

7.1. Близкодействие и дальнодействие

релевантные научные источники: